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B Cell–Adaptive Immune Profile in
Emphysema-Predominant Chronic Obstructive
Pulmonary Disease

To the Editor:

Subjects who fall into the same Global Initiative for Obstructive
Lung Disease (GOLD) category of chronic obstructive
pulmonary disease (COPD) severity are remarkably
heterogeneous, and this diversity is often difficult to handle
from a therapeutic standpoint (1). Computed tomography (CT)
has been instrumental in identifying COPD subphenotypes,
such as airway disease (AD) and parenchymal destruction
(emphysema), the relative contribution of which varies from
patient to patient. Importantly, emphysema is detected by
CT scan in 20% of the smokers who do not meet the
spirometric criteria of COPD (2). Recent studies have
highlighted some major differences between emphysema and
AD, such that they are now believed to be two specific
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endotypes (3) that can overlap with each other, and not
manifestations of the same disease.

Cigarette smoke, the major risk factor for COPD in developed
countries, causes pulmonary inflammation that persists long
after smoking cessation, suggesting self-perpetuating adaptive immune
responses similar to those that occur in autoimmune diseases. Increases
in the number and size of B cell–rich lymphoid follicles (LFs) have
been shown in patients in severe stages of COPD (4), and increased B-
cell products (autoantibodies) have been observed in the blood and
lungs of patients with COPD (5, 6). Oligoclonal rearrangement of the
immunoglobulin genes has been observed in B cells isolated from
COPD LFs, suggesting that a specific antigenic stimulation drives B-
cell proliferation. Consistently, we have shown that in the COPD lung,
there is an overexpression of BAFF (B-cell activation factor of the
TNF family), which is a key regulator of B-cell homeostasis in several
autoimmune diseases (7) and is involved in the growth of LFs in
COPD. However, a network analysis of lung transcriptomics showed
that a prominent B-cell molecular signature characterized emphysema
preferentially but was absent in AD independently of the degree of
airflow limitation (8). In the current study, we investigated the
correlation between B-cell responses in lung tissue from patients with
COPD and healthy smokers, and the extent of emphysema versus
airflow limitation.

Methods
We collected formalin-fixed paraffin-embedded lung sections
from 52 subjects undergoing lung volume reduction surgery or

transplant for treatment of severe emphysema, or lung
resection for a solitary peripheral nodule (the lung tissue studied
was at least 10 cm away from the nodule). The subjects were
classified as 1) active or former smokers with GOLD stages 1–2
or GOLD stages 3–4 COPD, or 2) healthy smokers without
COPD (SC; see Table 1). None of the subjects had evidence
of respiratory tract infection at the time of the surgery.
The lung sections were immunostained for 1) 1:200 murine
anti-CD20 (B-cell marker) and 1:100 rat anti-BAFF; 2) 1:50 rat
anti CD45R (hematopoietic origin cell marker expressed on
B cells), 1:100 rabbit anti-CD138 (plasma cell marker), and
1:50 murine anti-CD10 (immature B-cell and follicle center
B-cell [centrocyte] marker); 3) 1:50 rat anti-CD45R, 1:50
rabbit anti-IgD, and 1:50 murine anti-CD24 (naive B cells);
and 4) 1:50 rat anti-CD45R, 1:50 murine anti-IgG, and 1:50
rabbit anti-CD27 (memory B cells). All of the antibodies
were obtained from Abcam. Appropriate isotype-matched,
nonimmune control antibodies were used for each
staining. For each sample, at least 20 randomly selected,
nonconsecutive, high-magnification fields were evaluated
using a Leica epifluorescence microscope. The numbers of
parenchymal, vascular, and bronchial LFs (defined as aggregates
containing more than 40 contiguous mononuclear cells that
demonstrated the characteristic topographical arrangement of
B cells) (7), BAFF1 B cells, BAFF1 alveolar type I and type II
cells, CD1381, CD101, CD241, IgD1, IgG1, and CD271 B cells
were counted and normalized by alveolar tissue area using

Table 1. Selected Demographics, Comorbidities, and Medication Use of the Study Participants

Selected Demographics n GOLD 1–2 GOLD 3–4 SC All Subjects P Value

Total number of participants 23 18 11 52
Sex, % female 52 35% 56% 18% 49% 0.122
Age 52 63.45 (10.73) 60.17 (5.01) 63.73 (11.98) 62.35 (9.40) 0.479
Percentage of current smokers 52 30% 11% 27% 23% 0.273
Pack-years 49 52.36 (42.63) 51.35 (20.72) 54.00 (33.80) 52.34 (33.75) 0.982
FEV1% predicted 52 76.95 (18.51) 29.89 (11.11) 91.27 (15.93) 63.43 (29.88) ,0.001
FEV1/FVC 50 60.95 (8.02) 43.47 (14.25) 78.40 (7.72) 58.45 (16.50) ,0.001
DLCO% 34 67.29 (23.35) 42.83 (22.41) 68.29 (16.77) 58.61 (24.37) 0.014
KCO% 34 79.00 (26.27) 50.08 (33.10) 87.43 (26.44) 70.27 (32.23) 0.016

Comorbidities
Hypertension 52 36% 28% 42% 35% 0.757
Gastroesophageal reflux disease 52 14% 6% 8% 10% 0.837
Hyperlipidemia 52 9% 11% 25% 13% 0.449
Diabetes mellitus 52 18% 6% 0% 10% 0.272
Lung adenocarcinoma 52 41% 6% 50% 31% 0.009
Squamous cell lung cancer 53 36% 0% 25% 21% 0.009

Medications
LABA/LAMA/SABA 52 32% 100% 17% 52% ,0.001
Inhaled corticosteroids 52 18% 78% 25% 40% ,0.001
Statins 52 36% 17% 50% 33% 0.158
Protonic pump inhibitors 52 27% 22% 42% 29% 0.542
ACE inhibitors/angiotensin receptor blockers 52 32% 17% 25% 25% 0.560
Calcium antagonist 52 23% 11% 25% 19% 0.607
Diuretics 52 14% 22% 17% 17% 0.893
Oral corticosteroids 52 5% 22% 8% 12% 0.248
b blockers 52 5% 11% 25% 12% 0.208

Definition of abbreviations: ACE = angiotensin-converting enzyme; GOLD = Global Initiative for Obstructive Lung Disease; LABA = long-acting b-agonist;
LAMA = long-acting muscarinic antagonist; SABA = short-acting b-agonist; SC = smokers without chronic obstructive pulmonary disease.
The values are expressed as mean (SD). P values for difference across the three groups represent one-way ANOVA for continuous measures and Fisher’s
exact test for categorical measures.
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Figure 1. Increases in B cell–adaptive immune responses are associated with the extent of emphysema and not with airflow limitation. (A) Triple
immunofluorescence staining for CD45R (B-cell marker), CD138 (plasma-cell marker), CD10 (immature B-cell and follicle center B-cell [centrocyte]
marker), and the merge panel. The green arrows indicate CD1381 B cells, and cyan arrows indicate CD101 B cells. (B) Triple immunofluorescence
staining for CD45R, CD27 (memory B cells), IgGs, and the merge panel. The green arrows indicate CD271 B cells, and the cyan arrows indicate
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MetaMorph software. The analysis of the CT scans was
performed by two independent experts in chest CT scans. The
Chest Imaging Platform software (https://chestimagingplatform.org)
was used to quantify emphysema as the percentage ratio of
low-attenuation areas below a threshold of 2950 Hounsfield units
(%LAA950) (9).

Statistical analysis. Associations between BAFF1 B cells,
BAFF1 alveolar cells, DLCO, KCO and CD101, CD241,
CD271, CD1381, IgD1, and IgG1 B cells were tested with
Spearman’s rank correlation tests. To determine whether %LAA950

and FEV1% predicted (FEV1%pred) were independently
associated with the B-cell–related parameters measured,
multivariate linear regression models were used that
included, among other covariates, either %LAA950 or FEV1%
pred as the independent predictor. For cellular parameters
that showed a significant association with both %LAA950 and

FEV1%pred, mutually adjusted models that included both
predictors were assessed. The models included all subjects
from both COPD groups (stages 1–2 and 3–4) as well as
smoking control subjects.

The independent relationship between selected
cellular parameters and emphysema and FEV1 was
displayed and tested with Spearman’s correlation after the
participants were stratified into groups according to GOLD
stage (GOLD 1–2 and GOLD 3–4) and emphysema
level (above or below the median %LAA950), respectively.
Smoking control subjects were kept as a separate group in
these graphs.

Results
As expected, %LAA950 and FEV1%pred correlated inversely with
each other (r=20.766; P, 0.001), and they were both associated

Table 2. Adjusted Coefficients for the Associations of Emphysema (%LAA950) and FEV1% Predicted with Cellular Parameters of
B-Cell Activation in Separate (Left Columns) and Mutually Adjusted (Right Columns) Linear Regression Models

Separate Models: %LAA950 or
FEV1%pred As Predictor

Mutually Adjusted Models: Both %LAA950 and
FEV1%pred As Predictors

Dependent Variable Predictor
Adjusted

Coefficient* 95% CI
Adjusted
P Value

Adjusted
Coefficient* 95% CI

Adjusted
P Value

No. of lymphoid
follicles/cm2

of lung tissue, log†

%LAA950 0.023 0.014, 0.032 ,0.001 0.021 0.010, 0.032 ,0.001
FEV1%pred 20.009 20.014, 20.003 0.004 20.002 20.008, 0.004 0.505

No. of BAFF1

B cells/cm2

of alveolar tissue,
log†

%LAA950 0.018 0.010, 0.026 ,0.001 0.016 0.006, 0.026 0.003
FEV1%pred 20.007 20.012, 20.002 0.005 20.002 20.007, 0.004 0.517

No. of BAFF1 alveolar
cells/cm2 of alveolar
tissue, log†

%LAA950 0.010 0.005, 0.016 0.001 0.008 0.001, 0.016 0.031
FEV1%pred 20.005 20.008, 20.001 0.007 20.002 20.006, 0.002 0.321

Percentage of CD101

B cells/total B cells
%LAA950 0.326 0.236, 0.415 ,0.001 0.338 0.228, 0.449 ,0.001
FEV1%pred 20.093 20.159, 20.027 0.007 0.012 20.048, 0.072 0.683

Percentage of CD271

B cells/total B cells
%LAA950 0.278 0.093, 0.464 0.004 0.239 0.010, 0.467 0.041
FEV1%pred 20.112 20.217, 20.007 0.038 20.037 20.161, 0.086 0.546

Percentage of CD1381

B cells/total B cells
%LAA950 0.377 0.238, 0.516 ,0.001 n/a n/a n/a
FEV1%pred 20.049 20.144, 0.047 0.311 n/a n/a n/a

Percentage of IgG1

B cells/total B cells
%LAA950 0.152 0.080, 0.224 ,0.001 n/a n/a n/a
FEV1%pred 20.020 20.065, 0.026 0.395 n/a n/a n/a

Definition of abbreviations: BAFF = B-cell activation factor of the TNF family; CI = confidence interval; FEV1%pred = FEV1% predicted; n/a = not applicable;
%LAA950 = low-attenuation areas below a threshold of 2950 Hounsfield units.
Models included all patients with chronic obstructive pulmonary disease (without stratification by Global Initiative for Obstructive Lung Disease stage) and
smoking control subjects.
*Also adjusted for sex, age, smoking status, and presence of lung cancer. Pack-years were excluded from the models owing to missing data for three
participants. Results were confirmed in a sensitivity analysis after further adjustment for pack-years.
†Dependent variables were first log-transformed in base 10 to achieve normalization. Participants with no lymphoid follicles were transformed to the base
10 log of 0.1.

Figure 1. (Continued). IgG1 B cells. Isotype control merge figures are shown on the right of both A and B. (C and D) Stratified graphs are presented for the
association of low-attenuation areas below a threshold of 2950 Hounsfield units (%LAA950) and FEV1% predicted (FEV1%pred) with (C) the number of
lymphoid follicles (LFs)/cm2 of lung tissue and (D) the %CD1381 B cells/total B cells. For each graph, the relationship of the parameter of interest with
%LAA950 within different Global Initiative for Obstructive Lung Disease (GOLD) stages (1–2 vs. 3–4) is shown in the left panel, and the relationship with
FEV1%pred within different levels of emphysema is shown in the right panel. SC= smokers without chronic obstructive pulmonary disease (COPD).
(E and F) Double-immunofluorescence pictures of formalin-fixed paraffin-embedded lung sections from 1) a patient with GOLD 1–2 COPD and severe
emphysema (E), showing robust BAFF (B-cell activation factor of the TNF family) staining in most of the alveolar cells, LF B cells, and parenchymal B cells;
and 2) a patient with GOLD 1–2 COPD and low emphysema (F), showing fewer BAFF1 alveolar cells, B cells within the LF, and parenchymal B cells. In E,
the inset shows a detail of an LF, with the great majority of B cells expressing BAFF. The green arrows indicate BAFF1 B cells and alveolar cells.
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with the number of LFs, BAFF1 B cells and alveolar cells, CD101

B cells and plasma cells (Figure 1A), and memory and IgG1

B cells (Figure 1B) when tested separately in multivariate linear
regression models (Table 2, left columns). However, when they were
mutually adjusted in the same regression models (Table 2, right
columns), only %LAA950, and not FEV1%pred, remained significantly
and strongly associated with all of these cellular parameters. We did
not find any significant association between the numbers of IgD1 and
CD241 cells and %LAA950 and FEV1%pred (data not shown). From
the analysis of consecutive tissue sections, we observed that,
interestingly, in subjects with the highest %LAA950 values, most of the
CD1381 B cells tended to cluster together and were also CD101.
Some of these cells were also expressing either CD27 or IgG, or both.
In contrast, in the subjects with low %LAA950 values, only a minority
of CD1381 B cells were also positive for CD10.

Consistent with these results, as shown in Figure 1C, levels of
%LAA950 correlated significantly with the number of LFs both
among subjects in GOLD stages 1–2 and among those in GOLD
stages 3–4 (left panel). However, after stratification by emphysema
levels, FEV1%pred did not correlate with the number of LFs
among subjects with low or high emphysema (right panel).
Similarly, %LAA950 was found to be associated with the percentage
of plasma cells in each COPD group as well as among SC (Figure 1D,
left panel), whereas no association was found between FEV1%pred
and the percentage of plasma cells in either of the emphysema
groups or among SC (Figure 1D, right panel). In line with these
results, %LAA950, but not FEV1%pred, was also shown to be
significantly associated with the other B-cell subpopulations studied
when stratified into the same groups (data not shown). As expected,
LFs in lungs from subjects with high %LAA950 were very rich
in BAFF (Figure 1E), in contrast to the subjects with low
%LAA950, where low pulmonary LF BAFF levels were observed
(Figure 1F). The numbers of BAFF1 B cells and alveolar cells
were highly correlated with the numbers of LFs (r= 0.7 and
0.6, respectively), CD101 B cells (r= 0.6 and 0.7, respectively),
plasma cells (r=0.4 and 0.6, respectively), memory B cells
(r= 0.4 and 0.5, respectively), and IgG1 B cells (r=0.3 and
0.5, respectively). The DLCO and KCO values were also
strongly correlated with the numbers of LFs (r=20.5), BAFF1

B cells (r=20.6), and BAFF1 parenchymal cells (r=20.5), and with
CD101 B cells (r=20.5). In addition, KCO was also correlated with
the number of plasma cells and memory B cells (r=20.4).

Discussion
These data are in line with previous findings that the presence
of emphysema, and not the degree of airflow limitation, is
correlated with a specific lung endotype dominated by B-cell
responses (8). We now extend these findings to all COPD
GOLD stages and SC, showing that an upregulation of the B-cell
immune compartment in lung tissue is directly linked to
%LAA950 and not to FEV1%pred. Our results support the
hypothesis that an overactivation of the B-cell compartment,
characterized by increases in naive, memory, and antibody-
producing B cells and expression of BAFF by B cells and
alveolar cells, is abundant in the emphysematous lung, either
as a consequence or as a concurrent cause of the ongoing
emphysematous process (10). Importantly, the cellular readouts
of activation of the B-cell compartment were also significantly
directly associated with the extent of emphysema in the

smokers without airflow limitation. This suggests that increases
in B cell–adaptive immune responses are present before lung
function starts to decline. We should acknowledge that the
association between B cells and emphysema in our cross-
sectional study does not provide proof of a causal association
(cause–effect), and could be due to chance, bias, confounding, and/or
reverse causation (effect–cause), the effects of which need to be
explored in future studies analyzing broader cohorts of subjects.

These observations may open new therapeutic paths for patients
withCOPD, as the complexity of B-cellmaturation presents opportunities
for therapeutic interventions. Currently, there is a lack of disease-
modifying therapies for COPD, mainly because available therapies target
patients with COPD as a whole and cluster them simply
according to their airflow limitation. We believe that further
characterization of a B-cell endotype associatedwith emphysema could 1)
shift the notion that patients with COPD, even within the same GOLD
stage, are pathobiologically similar and thus require similar clinical
management; and 2) define the clinical phenotype (likely emphysema)
that could benefit from therapies targeting B cells or B-cell products
(e.g., BAFF), leading to earlier and more personalized therapeutic
interventions that may greatly alleviate the burden of COPD. n
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Network Analysis of Genome-Wide Association
Studies for Chronic Obstructive Pulmonary Disease
in the Context of Biological Pathways

To the Editor:

Chronic obstructive pulmonary disease (COPD) is a common
respiratory disease projected to be the third leading cause of death by
2020 (1). The main risk factor is tobacco smoking, but other

environmental exposures may also contribute (1). Furthermore, host
factors including genetic abnormalities, abnormal lung development,
and accelerated aging increase susceptibility to COPD (1). However,
the causal mechanisms remain poorly understood (2).

As a result of genome-wide association studies, many
interesting genetic variations, including SNPs, have been discovered.
However, the interpretation of these large amounts of data
within the context of biological systems, disease processes, and
unknown gene functions remains difficult. Considering genes in
a biological context may aid in the elucidation of SNP function.
Network analysis provides a way of deciphering the biological
relationships among SNPs, genes, and pathways by providing a
framework that allows for the integration, analysis, and display
of these complex data (3).

We used data from a recent meta-analysis to identify and
extract all genetic variants published in pooled and meta-analysis
studies related COPD risk (Prospero CRD4201705; May 2018).
We extracted the 181 significant genetic variants (regardless of
linkage disequilibrium) mapped to 99 genes that included 176
SNPs with reference SNP cluster identifier (rs) and other variants
such as multiple SNP combinations, insertions and deletions, or
length polymorphisms.

Genes and variants were represented in a SNP–gene network
using Cytoscape version 3.6. Second, the genes were used to
retrieve the biological pathways from WikiPathways Human
curated collection (10 July 2018). Genes present in one or more
pathways were displayed in a Cytoscape gene–pathway network.
The SNP–gene and gene–pathway networks were then
consolidated by merging them. This yielded a SNP–gene–pathway
network that was used as a basic reference for the biological
interpretation of the connected elements. Finally, genes were
classified according to their function and potential effect, using
the variant effect predictor analysis in Ensembl (4).

Our analysis produced four different visualizations. In Table 1,
an overview of the main characteristics of the networks is reported.
In each network title, the digital object identifier to the Network
Data Exchange visualization is provided and the main features of
the networks and nodes codes are reported, all of which are fully
downloadable and interactive.

The networks consist of 181 variant nodes, 99 gene nodes, and
315 pathway nodes, and 735 connections between them. Of the
original set of 99 genes, 74 genes are present in pathways from the
curated WikiPathways collection. The basic version, Gene–pathway
network, highlights the three elements: SNPs, genes, and pathways
in different colors.

The Functional gene map visualization presents functional
classes in the network. Here we show 13 nonoverlapping functional
classes: Addiction, Cellular interaction, Cellular metabolism,
Cellular structure, Detoxification, Development, Homeostasis
organismal, Inflammation, Lung function, Metabolism
organismal, Regulation, Tissue remodeling, and Unknown.
Interestingly, some of the gene functional classes are dispersed,
whereas in others all are connected. Cellular metabolism (forest
green) shows dispersion: 15 genes are not connected in the major
central network, and 7 of the 15 do not present any pathway
connections. Comparatively, all five genes related to Detoxification
cluster in a specific area (refer to online visualization, pink-nodes).
Similarly, all 15 genes involved in Inflammation are intensely
connected to genes and other pathways and are grouped in the
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